Post-Earthquake Repair and Strengthening of Historical Palace in Nepal

Dr. Kit Miyamoto, SE Achyut Khanal, PE

Miyamoto International locates along the Ring of Fire

mıyamoto.

save lives, impact economies

- Rana Palace built in 1907
- Located in the most prominent square in capital
- UNESCO World Heritage Site

- Destroyed by 2015 earthquake
- Abandoned for 2 years

- Collapse of the corner structures
- Failure of the columns and parapet

Out-of-plane failures

Masonry work

Lime mortar in a few distinct locations. Parapet walls and columns contain solely lime mortar. Lime mortar within brick walls at horizontal intervals of approximately 1.8m.

Timber

- Roof Truss
- Ceilings and floors

Steel

- Reinforcing connection of timber truss
- Strap for ceiling
- Reinforcing strap to walls (potentially added after 1934 earthquake)

Tin

Ornamental metal sheet

FEM Damage Simulation with April25th Event

• 3 fundamental mode: 1.33, 0.71, 0.50 sec

FEM Damage Simulation with April25th Event

- Max parapet out of plane displacement due to April 25 response spectrum:
 197 mm (8 inches)
- Max column tip displacement due to April 25 response spectrum: 180 mm
- drift ratio 1.8%

Actual column displacement measured in site: 195 mm

FEM Damage Simulation with April25th Event

- Envelop of DL+LL+/-EL(A25)
- compression (~3.0 > 0.87)
- shear stress (~0.6 > 0.2) exceeding in large areas

Intervention approach

Option 1 Engineering Approach:

- Modern construction material, e.i. Concrete & steel
- Incorporating such structural system to conventional construction, such as brick.
- -Retrofitting of structure

Intervention Option 1

Intervention approach

Option 1 Engineering Approach:

- Theory of modern construction material, e.i. Concrete & steel
- Calculation technique for these material
- Incorporating such structural system to conventional construction, such as brick.

Option 2 Enhancement of Original Construction Technology:

- Understand traditional resistant system
- Understand why and what went wrong
- Follow the traditional system;
 Keep what worked well
- Retrofitting of CULTURE and HISTORY

Rigid boxes + Mezzanine + Long wall + Diaphragm

(Transitional zone)

(cornice level)

Rigid boxes + Mezzanine + Long wall + Diaphragm (Transitional zone) (cornice level)

Restoring proper combination of spring effects

Restoration/intervention of arcade diaphragm (K1)

save lives, impact economies

Detail of diaphragm interventions

Restoration/Improvement of Truss-Wall interaction (K2) (enhancing timber roof beam function enhancing bracing effect of ceiling)

Band diaphragm (k3)

Detail of Band diaphragm (k3)

Local interventions (prevention of parapet fall)

CONNECTION DETAILS OF BRACING

1;2

Steel rod to keep box action

Typ. Detail of steel rod interventions

Wood band in rebuilt brick wall

Improve confinement of brick wall

Inter Connection of South Parapet Corner Improve interlocking effects between adjacent parapet

6 DETAIL OF (N) BRICK MASONARY WALL AT CORNER

FEM Performance Base Analysis with Retrofitted model

- Max parapet out of plane displacement due to April 25 RS: 93 mm (4 inch)
- Max column tip displacement due to April 25 RS: 74 mm
- drift ratio 0.84%

FEM Performance Base Analysis with Retrofitted model

- Envelop of DL+LL+/-EL(A25)
- compression (< ~ 0.87)
- shear stress (<~ 0.2) exceeding area localized

FEM Performance Base Analysis with Retrofitted model

Performance Base Comparison under A25 RS

	w/o interventions	w/ interventions
Drift ratio	1.8%	0.84%
Compression stress in pier	3.0 MPa	1.7 MPa
Shear in parapet	0.6 MPa	0.3 MPa

make the world a better, safer place.